小說推廣想要爆量,單靠野路子的離譜標題是不夠的。小說推廣的本質是內容付費小說信息流推廣,選一本受歡迎的好書才是起量的基礎。

全民自媒體時代,內容創作門檻極低。看多了文章小說,孰優孰劣一眼便知。沖著標題和浮夸情節可能湊個熱鬧小說信息流推廣,真到付費章節,讀者自然不會買單。

小說推廣如何選書?信息流爆款輕松起量-開水網絡

思路簡單,以閱文后臺為例,首先拿到后臺所有的書名,然后查詢該書的百度指數。拓展一下可以用主人公去查去小說信息流推廣,也可以查微信指數、微博指數等等。

import requests
import pandas as pd
import index_baidu
def checkw(word):
    cookies=''
    headers = {
        'Connection': 'keep-alive',
        'sec-ch-ua': '^\\^Google',
        'Accept': 'application/json, text/plain, */*',
        'sec-ch-ua-mobile': '?0',
        'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.114 Safari/537.36',
        'index_csrftoken': '',
        'Sec-Fetch-Site': 'same-origin',
        'Sec-Fetch-Mode': 'cors',
        'Sec-Fetch-Dest': 'empty',
        'Referer': 'https://index.baidu.com/v2/main/index.html',
        'Accept-Language': 'zh-CN,zh;q=0.9',
        'Cookie':cookies
    }
    params = (
        ('word', word),
    )
    response = requests.get('https://index.baidu.com/api/AddWordApi/checkWordsExists', headers=headers, params=params)
    #print (response.json())
    return response.json()
def yunwen(page):
    cookies = ''
    headers = {
        'Connection': 'keep-alive',
        'sec-ch-ua': '^\\^Google',
        'Accept': 'application/json, text/plain, */*',
        'sec-ch-ua-mobile': '?0',
        'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.114 Safari/537.36',
        'Sec-Fetch-Site': 'same-origin',
        'Sec-Fetch-Mode': 'cors',
        'Sec-Fetch-Dest': 'empty',
        'Referer': 'https://open.yuewen.com/new/library',
        'Accept-Language': 'zh-CN,zh;q=0.9',
        'cookie':cookies
    }
    params = (
        ('cbid', ''),
        ('page', page),
        ('version', '2'),
        ('category1', '2'),
        ('allwords', '-1'),
        ('category2', '-1'),
        ('isfinish', '-1'),
        ('level', '-1'),
    )
    response = requests.get('https://open.yuewen.com/api/wechatspread/bookSpread', headers=headers, params=params)
    return response.json()
while nextpaget:
    p=p+1
    data=yunwen(p)
    maxpage=data['data']['maxPage']
    datalist+=data['data']['list']
    print (p,maxpage)
    if p>maxpage:
        nextpaget=False
    else:
        pass
df=pd.DataFrame(datalist)
df.to_csv("datalist.csv",encoding="utf_8_sig")
for i in datalist:
    #try:
    #    data=checkw(i['BookName'])
    #    try:
    #        status=data['data']['result'][0]['status']
    #        lastday=""
    #    except:
    #        status="有指數"
    #        words = [[{"name": i['BookName'], "wordType": 1}]]
    #        result=index_baidu.get_index_data(words)
    #        lastday=result[-1]
    #except:
    #    status="失敗"
    #    lastday=""
    try:
        words = [[{"name": i['BookName'], "wordType": 1}]]
        status,avg,day30=index_baidu.get_index_data(words)
    except:
        status,avg,day30="失敗","",""
    i['status']=status
    i['avg']=avg
    i['day30']=",".join(day30)
    returndatalist.append(i)
    print (i['BookName'],status,avg)
df=pd.DataFrame(returndatalist)
df.to_csv("yuewen.csv",encoding="utf_8_sig")

其他想法,歡迎交流!

免責聲明:本文系轉載,版權歸原作者所有;旨在傳遞信息,不代表本站的觀點和立場和對其真實性負責。如需轉載,請聯系原作者。如果來源標注有誤或侵犯了您的合法權益或者其他問題不想在本站發布,來信即刪。